Flexor Tendon Rehabilitation
Romina Astifidis MS, PT, CHT
Curtis National Hand Center
Baltimore, MD
October 6-8, 2017

Keys to successful treatment
- Doing the wrong thing can lead to injury
- Not doing enough of the right thing can cause poor outcomes
- Use the following resources
 - Mentors
 - Surgeons
 - Protocols
 - Evidence

Tendon healing
- Extrinsic healing
 - Adhesion formation between tendon and surrounding tissue
 - Potenza and Peacock (1960-70s)
 - Tendons healed by fibroblastic response (adhesions)
 - Tendon cells were incapable of proliferating
 - "One wound" concept = tendon healing through adhesion formation

Factors that affect tendon healing
- Age
- Individual biochemical response
- Nutrition
- Mechanism/type of injury
 - Crush or untidy laceration
 - Associated fractures or blood vessel injury
 - Controlled stress

Tendon Healing

Tendon healing
- Tendons ability to heal without adhesions
- Intrinsic vascularity and synovial diffusion
- Fibroblasts needed for healing
 - Supplied by the endotenon and epitenon
 - Tenocytes appearing at 2-3 weeks

Gelberman et al., Manske et al., Lundborg et al. (1980s)
Controlled Stress

- Promotes intrinsic healing
- Encourages longitudinal orientation of adhesions
- Decreases joint stiffness

Physiologic response

- Improved tensile strength
- Improved tendon excursion
- Improved repair site cellularity
- Enhanced nutrition and intrinsic healing via synovial fluid
- Reorganization, elongation, and reorientation of extrinsic scar

Consideration for application

- Type of injury
- Zone of injury
- Repair technique
 - Number of strands
 - Epitendinous suture
 - Ensure strong enough repair for controlled stress
- Patient factors
 - Age, cognitive status, adherence

Precise transmission

- Provide enough stress to move tendon a controlled amount
 - 3-5 mm as determined by Gelberman and Duran
- Avoid gapping or rupture

Tensile Strength
Tendon tensile strength

- Decreases during the first week following a repair
 - Mason & Allen, 1941
- Progressive increase after the first 2-3 weeks
- Increase in strength proportional to the amount of stress provided
- Immediate controlled stress to the healing tendon facilitates a reversal of the initial weakening process
- Maximum collagen synthesis occurs at 3 weeks

Estimated repair strength

Strickland, 1993

<table>
<thead>
<tr>
<th>Strands</th>
<th>0 week</th>
<th>1 week</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2500gm</td>
<td>1250gm</td>
<td>1700gm</td>
<td>2700gm</td>
</tr>
<tr>
<td>4</td>
<td>4500gm</td>
<td>2150gm</td>
<td>2800gm</td>
<td>5200gm</td>
</tr>
</tbody>
</table>

Tensile Stress on Repaired Flexor Tendons

- Passive motion: 750 g
- Light grip: 2250 g
- Strong grip: 7500 g
- Tip pinch—index FDP: 13,500 g

- This is the repair strength needed to be maintained throughout healing
- Reflects upward adjustments of 25% for frictional forces, and 25% for edema
- Forces on FDS 2-7X less than FDP

Normal Tendon

<table>
<thead>
<tr>
<th></th>
<th>Passive motion</th>
<th>Light grip</th>
<th>Strong grip</th>
<th>Tip pinch—index FDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>500 g</td>
<td>1500 g</td>
<td>5000 g</td>
<td>9000 g</td>
</tr>
</tbody>
</table>

Repaired Tendon

<table>
<thead>
<tr>
<th></th>
<th>Passive motion</th>
<th>Light grip</th>
<th>Strong grip</th>
<th>Tip pinch—index FDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>750 g</td>
<td>2250 g</td>
<td>7500 g</td>
<td>13,500 g</td>
</tr>
</tbody>
</table>

Passive, protected digital extension

Up to 400g of force

- Urbaniak et al., 1975; Schuind et al., 1992; Lieber et al., 1996-1999; Groth, 2004

<table>
<thead>
<tr>
<th>Strands</th>
<th>0 week</th>
<th>1 week</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2500gm</td>
<td>1250gm</td>
<td>1700gm</td>
<td>2700gm</td>
</tr>
<tr>
<td>4</td>
<td>4500gm</td>
<td>2150gm</td>
<td>2800gm</td>
<td>5200gm</td>
</tr>
</tbody>
</table>

Active wrist flexion/Extension

Up to 300g of force

- Schuind et al., 1992

Up to 400g of force

- Schuind et al., 1992

<table>
<thead>
<tr>
<th>Strands</th>
<th>0 week</th>
<th>1 week</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2500gm</td>
<td>1250gm</td>
<td>1700gm</td>
<td>2700gm</td>
</tr>
<tr>
<td>4</td>
<td>4300gm</td>
<td>2150gm</td>
<td>2800gm</td>
<td>5200gm</td>
</tr>
</tbody>
</table>
Active straight fist

Up to 1100 gm of force

Greenwald et al., 1994

Groth, 2004

<table>
<thead>
<tr>
<th>Strands</th>
<th>0 week</th>
<th>1 week</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>250gm</td>
<td>125gm</td>
<td>1700gm</td>
<td>2700gm</td>
</tr>
<tr>
<td>4</td>
<td>430gm</td>
<td>2150gm</td>
<td>2800gm</td>
<td>5200gm</td>
</tr>
</tbody>
</table>

Active hook fist

Up to 1300 gm of force

Greenwald et al., 1994

Groth, 2004

<table>
<thead>
<tr>
<th>Strands</th>
<th>0 week</th>
<th>1 week</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>250gm</td>
<td>125gm</td>
<td>1700gm</td>
<td>2700gm</td>
</tr>
<tr>
<td>4</td>
<td>430gm</td>
<td>2150gm</td>
<td>2800gm</td>
<td>5200gm</td>
</tr>
</tbody>
</table>

Active composite fist

400-4000 gm of force

Urbaniak et al., 1975

Schuind et al., 1992;

Greenwald et al., 1994

Evans, 1997

Silva et al., 1998

Gelberman et al., 1999

Boyer et al., 2001

Groth, 2004

<table>
<thead>
<tr>
<th>Strands</th>
<th>0 week</th>
<th>1 week</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>250gm</td>
<td>125gm</td>
<td>1700gm</td>
<td>2700gm</td>
</tr>
<tr>
<td>4</td>
<td>430gm</td>
<td>2150gm</td>
<td>2800gm</td>
<td>5200gm</td>
</tr>
</tbody>
</table>

Active, isolated joint motion

Up to 1900 gm of force

Schuind et al., 1992

Groth, 2004

<table>
<thead>
<tr>
<th>Strands</th>
<th>0 week</th>
<th>1 week</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>250gm</td>
<td>125gm</td>
<td>1700gm</td>
<td>2700gm</td>
</tr>
<tr>
<td>4</td>
<td>430gm</td>
<td>2150gm</td>
<td>2800gm</td>
<td>5200gm</td>
</tr>
</tbody>
</table>

Factors That Affect Flexor Tendon Repair Outcomes

- Mechanism/Type of Injury
- Multiple digits/concomitant injuries
- Age
- Patient motivation/socioeconomic factors
- Nutrition... smoking may cause vasoconstriction
- Timing of repair, timing of therapy
- Controlled Stress (mobilization)
 - Without tendon gaping and rupture

Factors that Cause Resistance to Flexor Tendon Gliding

- Surgical repairs
- Tendon bulkiness
- Smoothness of tendon gliding surface
- Healing responses of the tendons
- Presence of intact annular pulleys
- Edema formation
- Adhesion formation
- Joint stiffness
- Extensor tendon tethering
- Splints and bandages and speed, frequency and methods of postoperative care

Wu YF and Tang JB. Hand Clinics. 2013

****Amount of scar formation****
Factors that Cause Resistance to Flexor Tendon Gliding- cont’d

- Extreme flexion progressively increases resistance to tendon motion. It causes:
 - Impingement of repair sites to the sheath or pulley rims
 - Increase in the bulkiness of tendon
 - Narrowing of the tendon gliding tunnel
 - Increase in the tethering of the extensor mechanism
 - Tightening of the capsule of the digital joints
 - Increase of the compression of edematous subcutaneous tissues

Suggest:
- Only midrange active motion in the low-resistance range in the early post-operative period

Protocols

Key Concepts

- The therapist MUST
 - Understand concepts of applying controlled stress
 - Know the type of injury and repair performed
- No single protocol is appropriate for all repairs
 - Surgeon/therapist interaction is vital to this process
- Literature will vary with regard to timing

Types of Protocols

- Immobilization
 - Little to no controlled stress on a repaired tendon
- Early passive mobilization
 - Controlled stress on the healing tendon with active IP extension and passive flexion
- Early “active” mobilization
 - Higher level of controlled stress on repaired tendon
 - Gentle contraction of the repaired musculotendinous unit
 - Results in proximal gliding of the repaired tendon

Protecting the repair

- Joints supported in flexion
- Puts flexor tendon on slack
- Prevents gapping or rupture through excessive traction on the tendon

Treatment Progression

- If adhesions are significantly limiting tendon gliding
 - PROGRESS treatment
- If tendon gliding is good
 - PROTECT the tendon from resistance and potential rupture for a longer period of time
- How do you know??

Wu YF and Tang JB. Hand Clinics. 2013
Measurement

Strickland & Glogovac, 1980

\[
\frac{\text{Active PIP + DIP flexion – extension lag}}{\text{175°}} \times 100
\]

= % of normal active PIP and DIP motion

Excellent: 85-100%
Good: 70-84%
Fair: 50-89%
Poor: <50%

Immobilization

- Rationale/Used for:
 - Children (those under age 10-12)
 - Cognitively impaired
 - Non-adherent patients (????)

- EXTRINSIC HEALING

Immobilization

- Intermediate Stage (3 to 6 weeks)
 - Orthosis modified to wrist neutral
 - Removed for hourly exercises to include:
 - Passive flexion and extension of fingers with wrist in 10 ° extension
 - Active flexion: hook, straight, and full fist.
 - Synergistic motion

 - BE GENTLE...immobilized tendon is generally weaker

Immobilization

- Early stage (up to 4 weeks)
 - Dorsal blocking orthotic or cast
 - Wrist 10-30° flexion
 - MPJs 40-60° flexion
 - IPs in extension
 - If therapy is provided:
 - Passive flexion of the digits
 - Mobilization of uninvolved joints
 - Wound/scar management

Cifaldi-Collins & Shwarze, 1991

Immobilization

- After 3-4 days, assess tendon gliding
 - Measure full MP/PIP/DIP flexion passively and actively
 - If >50 ° difference is present, move to the late stage
 - If <50 ° difference noted, continue with intermediate phase of the program until 6 weeks post-op
Immobilization

- **Late Stage** (5 to 6 weeks)
 - D/C dorsal blocking orthosis
 - Add serial extension splinting
 - Begin *gentle* blocking exercises
 - After 1 week of gentle blocking, may initiate light resistance
 - If tendon gliding is good, delay any resistance

Early passive mobilization

Early Passive Mobilization

- **Rationale:**
 - Promoting *synovial diffusion for healing*
 - Inhibit dense adhesion formation
 - Facilitate a stronger repair at an earlier stage
- Two main protocols
 - Duran & Houser
 - Kleinert

“Original” Duran & Houser

- 0- 4 ½ Weeks
 - Orthosis
 - Dorsal block with wrist in 20° flexion, and MPs in a relaxed state of flexion:
 - *Orthosis ends at PIP joints to allow full IP extension*
 - *Rubber band traction to the injured finger (loosely) during the day*
 - Between exercises stockinette is applied over the fingers and pinned to forearm
 - All fingers resting in flexion within stockinette to prevent impulsive grasping

“Original” Duran & Houser

- Exercises: 6-8 repetitions, 2x/day within orthosis that blocks MP in flexion
 - Passively extend DIP while PIP is held passively in flexion
 - Passively extend PIP while DIP rests in flexion

“Original” Duran & Houser

- 4 ½ Weeks
 - Replace dorsal block with a wrist band with rubber band traction
 - Exercises: 10 repetitions every 2 hours as previous
 - Add gentle active extension against the rubberband traction.
"Original" Duran & Houser

- 5 ½ Weeks:
 - Hourly exercises: 10-12 repetitions
 - Remove wrist band and nail suture for rubber band attachment
 - Active flexion is initiated: gentle blocking, FDS gliding, and composite fist
 - Passive flexion of all joints
 - IP passive extension with MP flexed

- 6 Weeks
 - Begin gentle PIP extension
 - Dynamic splinting if needed

- 7 ½ Weeks
 - Initiate gentle resistance
 - No strong resistance to the tendon for another 2-4 weeks

"Modified" Duran

- Eliminate the rubber-band traction
- Extend the DBS hood to the fingertips
- Strap the fingers in IP extension at night
- Exercises:
 - Passive flexion: isolated and composite
 - Active IP extension
 - Passive protected extension
 - Protected tenodesis in therapy if appropriate

"Original" Duran & Houser

Modified Kleinert Protocol

- Dorsal blocking orthosis
 - Wrist in 45° flexion
 - MPs 40° flexion
 - IPs allowed full extension
 - Volarly applied “PFT” (postoperative flexor tendon)

Protected Tenodesis

Passive composite flex with wrist extension 20-30 degrees followed by passive wrist flexion; fingers extended passively by tenodesis effect
Modified Kleinert Protocol

- The PFT is a prefabricated orthosis
- Rubber band traction runs from the fingernail, under a rolling bar at the palm, to a coiled lever at the forearm.
- Coiled lever and rolling bar on the PFT
- Designed to minimize resistance within the rubber band during IP extension

Modified Kleinert Protocol

- Exercises: 20 repetitions per hour
- 0-4 to 6 weeks
 - Active IP extension against rubber bands
- 3-6 weeks
 - Remove orthosis for wrist motion at 4 weeks
 - Begin gentle active flexion
- 6 weeks
 - Discontinue orthosis
 - Add differential tendon gliding exercises
- 6-8 weeks
 - Begin gentle resistance

Washington Regimen

- Dorsal blocking orthosis
 - Wrist at 20-45° flexion
 - MPs at 40-60° flexion
 - IPs allowed full extension
- A safety pin is applied to the palmar strap at the distal palmar crease, and on the forearm strap
 - A nylon line is run from the fingernail of the injured finger(s) only, under the safety pin at the DPC, attaching to 2 rubber bands
 - One rubber band is cut, so that it is only a single strand
 - One rubber band with exercise; 2 at rest

Washington Regimen

- Full finger flexion to the distal palmar crease strap is attempted with singular rubber band traction

Washington Regimen

- 0-3 weeks
 - Therapist performs protected passive flexion and extension
 - Active extension against traction x10 reps, hourly
 - Rubber band traction on 24 hours/day
- 4 weeks
 - Discontinue rubber band traction
 - Begin active flexion with an active hold in flexion for 10 seconds, passive flexion, and active extension

Washington Regimen

- 5 weeks
 - May be allowed out of orthosis for hygiene and light activity
- 6 weeks
 - Discontinue orthosis
- 8 weeks
 - Add blocking if needed
 - Gradual increase in use and resistance
 - Heavy lifting above 5lbs not allowed until after week 12 post-op
Zone I Protocol: LEAF

- **Limited extension active flexion (LEAF)**
 - Evans, 1990
- **Rationale:**
 - Place the repaired FDP tendon in a shortened position
 - 4.5mm proximal to normal resting length
 - Decrease gap formation
- **Therapy initiated at 24 – 48 hours post op**

Zone I Protocol: LEAF

Weeks 0-4

- **Exercises- 10-20 reps/hour:**
 - Passive DIP flexion to 75° in orthosis
 - Passive composite flexion
 - Passive IP flexion with MPs resting at 30° in orthosis (modified hook position)
 - Full active PIP extension while other hand holds MP’s at 90° flexion
 - With distal strap extension, place and hold PIP joint flexion of injured finger

Zone I Protocol: LEAF

Weeks 0-4

- In therapy, orthosis removed for:
 - Passive wrist tenodesis
 - Slow repetitive motions to loosen finger
 - Short arc motion (SAM) place and hold against 15-20g of force in the following position:
 - Wrist extension = 20°
 - MP flexion = 75-80°
 - PIP flexion = 70-75°
 - DIP flexion = 40°

Zone I Protocol: LEAF

Weeks 3-4

- Discontinue DIP dorsal blocking gutter
- Add gentle place/hold flexion

Week 4

- Add synergistics, hook fist, and gentle DIP blocking for FDP glide
- Orthosis remolded to wrist neutral

Week 4 ½

- May begin DIP extension orthotic PRN

Zones III through V

- Repairs are most commonly placed in the preferred Zone II protocols
- Less complications and better results
 - Do not have the tight pulley/sheath system
 - Adhesions are often less dense
- Watch intrinsic scarring and/or paradoxical extension in zone III
Early “active” mobilization

“What” is Early Active Motion?

• Place and hold
 – ½ fist, whole fist
 – Optional tenodesis splint
• Active fist
 – 1/3 first 1-2 weeks, increasing to 2/3 the third week.
 Full ROM at week 4-5.
 – Full IPJ flex and ext with MCP extension blocked at
 60-80° flex
 – Finger method?
• Active initiation of fist to 50% with PROM to full
 fist
• Active fist with 45° MPJ, 45° PIPJ and 45° DIPJ

Indiana Protocol

• Repair technique
 – Tajima core suture plus horizontal mattress
 – Equal to 4 strand repair plus epitendinous suture
• Criteria
 • Motivated, understanding patients
 • Minimal to moderate edema which does not
 restrict passive flexion
 • Minimal wound complications

Indiana Protocol

• Week 0-4
 – Dorsal blocking orthosis
 – Wrist 20° flexion, MPs 50° flexion, IPs
 allowed full extension
 – Worn continuously
 • Once hourly: remove and apply hinged wrist
 splint
 • Immediately reapply dorsal blocking splint after
 exercises

Indiana Protocol

• Synergistic orthosis with hinge
 – Allows full wrist flexion and 30° extension
 – MPs blocked at 60° flexion
 – IPs allowed 0° extension

Indiana Protocol

Week 0-4

• Passive:
 – 15 reps of passive flexion/extension to the PIP joint,
 then the DIP joint, then entire digit
• Apply synergistic orthosis for 25 reps of
 place/hold
 – Passively flex digits & simultaneously extend wrist
 – Gentle place/hold contraction for 5 seconds
 – Simultaneous wrist flexion with digit extension to
 orthosis
Indiana Protocol

- Week 4:
 - Discharge synergistic orthosis
 - Continue dorsal blocking orthosis between exercise
- Exercises
 - Synergistic motion: 25 reps every 2 hours
 - Add light active finger flexion and extension
 - Avoid combined finger and wrist extension

Indiana Protocol

- Week 5
 - Exercises
 - Continue week 4 exercises
 - Add tendon gliding and hook fisting
- Week 6
 - Discontinue dorsal blocking orthosis
 - Exercises
 - Continue previous exercises
 - Add blocking exercises
 - Do not perform blocking exercises to the small finger FDP

Indiana Protocol

- Week 7
 - Add passive extension exercises
- Week 8
 - Add light resistance
- Week 14
 - Return to normal activity

Pyramid of Progressive Force

- Pyramidal series of eight exercise levels in ascending order of increasing force
- The patient progresses up a level in the pyramid if the tendon is unresponsive
 - Unresponsive = < 10% resolution of active lag between therapy sessions
 - Continue progression until the tendon is responsive
 - > 10% resolution of active lag between therapy sessions

Pyramid of Progressive Force (Groth, 2004)

- The active lag is measured:
 - \[
 \text{active lag} = \frac{\text{Current DIP flexion} - \text{previous DIP flexion}}{\text{previous DIP flexion}} \times 100\%
 \]
 - Absent = < 5 degree discrepancy between active and passive flexion
 - Responsive = > 10% resolution of active lag between therapy sessions
 - Unresponsive = < 10% resolution of active lag between therapy sessions

Note: The figure likely contains a visual representation of the pyramid of progressive force levels, but the text description is sufficient to understand the progression and measurement criteria.
Other protocols

- Critical aspects
 - Partial release of A2 pulley or complete release of A4 pulley
 - 4-6 strand repair for FDP
 - Active motion under load tension, synergistic with wrist position
- DBS with wrist 20-30° flex, MPJ slight flex, IPJ ext.
- Therapy starts at 3-5 days post-op
- For 2.5 weeks RX includes PROM 10 reps f/u by 10 A fists in comfortable range 4 times a day
- From 2.5-5 weeks, wrist splinted in 30° ext and focus on PROM, AROM for 2/3rds of fist assistance as needed to achieve full fist to prevent rupture
- D/C splint and full AROM at 5-6 weeks

Delay full active flexion to week 5 if multiple fingers are repaired or if a late tendon repair or a primary tendon rupture.

Nantong
Tang, 2007

Other protocols

- Patients perform full range of motion during surgery to ensure no gapping or lack of glide
- Post op days 2-4: hand is elevated and splinted with wrist in comfortable ext, MPJ flexed to 80-90° and PIP/DIPJ extended
- Post op days 3-7: passive warm up of fingers followed by active mid-range movement: 45° flex of each of the MP, PIP and DIP with full IPJ extension. No place and hold.
- Finger wrap

Mass & Saint John
Coats et al., 2005; Clancy & Mass, 2013; Lalonde, 2013

Manchester Short Splint
Peck, 2014

- 62 forearm-based
- 40 Manchester short
- Significantly less flexion contracture at PIP at 6 and 12 weeks
- Significantly greater arc of flexion at DIP
- Greater proportion of excellent/good results
Studies to note

 - Severe edema in subcutaneous tissue and tendon as measured by circumference adds to resistance of tendon gliding by 2x-3x
 - Resistance to motion increased progressively for the first 4 days and remained consistent from days 4-7 therefore recommend best time to start motion is 4th to 7th day
 - Repetitive PROM of the digit as "warm up" greatly reduced the force and energy of the digital flexion
 - Tendon swelling is worse in a delayed repair so sheath release or venting may be necessary
 - Self adhesive tapes increase digital flexion energy 4x baseline and should be removed for exercise.
 - Adhesions do not form before day 9 so digital motion can be started as late as day 7-9

FPL Repair

- Goal is minimum of 30-40 degrees of IPJ motion
- Direct repair at all levels of injury may be possible as late as 3 to 6 weeks after injury but may need tendon lengthening because of proximal retraction is greater in FPL
- Rate of rupture of repair in Zone 2 of thumb is twice as common as Zone 1 likely secondary to zone of avascularity.
- Splint positioning usually includes wrist in 10-20° flexion and CMC and MCP in neutral. Typically the IPJ is dorsally blocked at 20-25°
- Treatment options include early passive, place and hold or early active based on the type of suture and should be guided by physician.

Take Home Message

- Measure...measure...measure
- Never follow a protocol blindly- use clinical judgment
- Start therapy close to post op day 5 and before post op day 10
- Make sure to do a passive warm-up of finger prior to exercises which can include passive modified tenodesis and passive modified hook.
- Always position the wrist in neutral or slight extension for active exercises
- When doing place and hold or AAROM start with a looser fist
- Monitor interossei tightness and retrain hook fist for differential gliding

Thank you!