Upper Extremity Evaluation
Paige E. Kurtz, MS, OTR/L, CHT
Curtis National Hand Center
Baltimore, MD
October 6-8, 2017

Rationale
• Establish baselines
• Determine limitations
• Create a treatment plan
• Set treatment goals
• Determine treatment results and outcomes
• Progress or modify plan of care
• Determine efficacy of treatment

Criteria
• Accurate
• Standardized
• Reliable
• Reproducible
• Valid
• Feasible
• Systematic

Methods
• Observation
• Interview
• Clinical exam
• Measurements
• Conclusion

Observation
• Posture
• Positioning
• Neglect
• Nail condition
• Atrophy
• Edema
• Color
• Tremors
Interview

• Demographics: Age, hand dominance, occupation, hobbies, medications
• History:
 • Date of injury, surgery, or onset
 • Diagnostics performed
 • Previous treatment
• Full medical history:
 • Other conditions or illnesses
 • Alcohol or tobacco use

History: Past medical history

• health conditions
 • smoker, allergies
• cardiac (contraindication for many electrical modalities)
• vascular
• arthritis (pre-existing limitations?)
• diabetes (reduces peripheral circulation, slows healing)
• previous injuries and treatments (pre-existing limitations?) prior level of function

Interview

• Symptoms (objectify):
 • pain, numbness / tingling, weakness, deformity, poor coordination, functional deficits

• Patient Goal of treatment
• Secondary gain?

Pain

“The fifth vital sign” American and Canadian Pain Societies

• Affects quality of life
• Used to evaluate the effectiveness of interventions
• Patient report is gold standard
• Consider: quality, intensity, location, behavior, interference, impact on function

Numeric Rating Scale – measures pain intensity

• Ordinal 11-point scale: 0 = "no pain"; 10 = ? (undefined)
• Tracks change over time (2 pts = "substantial change")
• Psychometric properties for UE unavailable (results open for interpretation)
• Verbal or written
• No cost to use

Method

• Gather 1-4 responses
• Record and interpret each score separately or average the 4 measures
• Current pain
• Worst/least/average pain in past 2 weeks

Pain

Visual Analog Scale (VAS)

• Similar to NRS in that anchors are describe in the same way
• Consists of a single straight line
• Patient marks point on line where pain intensity falls
• Evaluator measures in mm from "0" point
• Ratio-level continuous scale, often preferred by researchers (lends itself to statistical analysis)
Pain

Brief Pain Inventory (BPI) – measures change over time in intensity and interference. ~5 minutes
• 4 subscales: location, intensity, medication usage, interference
• Requires 6th grade reading level

McGill Pain Questionnaire (MPQ) – measures sensory, affective, evaluative, and intensity aspects of pain experience. ~10 minutes
• 3 domains: present pain intensity, body diagram, and pain rating index (which itself has 4 domains: sensory, evaluative, affective, miscellaneous)

Pain Quality Assessment Scale (PQAS) – evaluates intensity and change over time in neuropathic pain conditions. Also used for non-neuropathic pain conditions.
• Written format
• 3 subscales: paroxysmal, superficial, and deep pain; 20 items

Pressure and Thermal Pain Threshold – used for fibromyalgia syndrome
• Not for hyposensate
• Must be able to remember and follow directions
• Method: application of pressure, heat apparatus, immersion in ice water, or electrodes. Patient reports when stimulus changes from pressure to pain

Pain

- Not mentioned in 2015 Clinical Assessment Recommendations

Wong-Baker Faces Scale
Useful for children, non-English speaking, and cognitively impaired

Palpation
• Provides anatomical landmarks as source of pain
• Begin proximal and distal to target area, move towards it
• Start with gentle pressure

Clinical Exam
• Appearance
• Wound
• Edema
• ROM
• Sensibility
• Strength
• Diagnostic

Appearance

Normal cascade

Deformities – swan neck, boutonniere
• Arthritic Nodes–Heberden’s (DIP)
 ~Bouchard’s (PIP)
Appearance

• CMC “Shouldering”
• Nail condition, e.g. nail “clubbing”
• Congenital conditions
• Pre-existing injuries

Vascular

PALE: may indicate arterial insufficiency
RED: may indicate infection/irritability
CYANOTIC: may indicate venous insufficiency due to decreased circulation

Appearance

Vascular

Assess pulses

• Subclavian – sternal end of clavicle in scalene (mm.)
• Axillary – center of armpit.
• Brachial- superior to antecubital fossa, medial to biceps tendon.
• Radial- just proximal to wrist crease, volar-radial wrist.
• Ulnar – just proximal to wrist crease, volar-ulnar wrist.
• Capillary refill test: apply pressure to pulp of nail, normal= 3 sec.

Appearance

Allen’s Test for radial or ulnar arterial patency

• Palpate radial and ulnar arteries at the wrist, and apply pressure to occlude both.
• Exsanguinate the hand by having the patient open and close fist several times, then open the hand to a relaxed open position.
• Release one of the arteries
• Note quality and time for the hand to re-perfuse.
• Normal is 3-5 seconds.

Wound

• Tissue: slough, eschar, granulation, macerated, dessicated, necrotic
• Wound edges: defined, attached

• Signs of infection: pain, redness, streaking, warmth, pus, fever, odor

Wounds

• Shape
• Color – black, yellow, red
• Size: length x width x depth
• Wound edges: defined, thickened, fibrotic, attached
• Undermining: involving what % of margin
• Tunneling: depth (if determinable)
• Exudate: serous, sanguinous, serosanguinous, purulent
• Tissue: slough, eschar, granulation, macerated, dessicated, necrotic
• Location
• Signs of infection: inflammation, erythema, streaking, pain, heat, pus, odor, malaise, fever
Assessment of Wound

- **Describe Drainage** (where applicable)
 - Bloody/Sanguinous/Red (healthy, bloody drainage)
 - Serous (thin yellowish/clear fluid)
 - Serosanguinous (combination of above)
 - Purulent (often thick, greenish or yellowish, signs of infection, often malodorous)

Wound

How would you describe this?

- Location
- Size:
- Color
- Odor
- Temperature
- Integrity (undermining, tunneling)
- Exudate
- Anything else?

Edema

- Volumetry
- Figure-of-eight method
- Circumferential measurement - ASHT does not recommend for routine use unless consistent tension applied with specific landmarks utilized

Volumeter

Pros
- Accuracy of measurement (validity)
- Reproducibility (reliability)

Cons
- Time consuming
- Messy
- Not for wounds

Document
- Sitting or standing
- Time of day
- Evaluates hand **mass** via water displacement.
- Preferred method for edema measurement
- Mild difference from right to left hand (~3%), test both hands, but compare injured extremity to itself

Volumeter

Method
- Forearm neutral position; palm faces patient
- Water 68-95 degrees F
- Volumeter on level surface
- Dry beaker below spout
- Remove jewelry
- Hand vertical, slowly immerse, don’t touch sides
- 3rd web space rests on dowel until water ceases to flow out
- Measure ml of water collected, or weigh contents
- Compare to contralateral
Figure-of-eight method

Pros
- Reliable
- Valid
- Easier than volumeter
- Ok with wounds

Cons - requires training to perform correctly

Document
- Time of day
- Contralateral measurement

Circumferential measurement

Pros
- Easy
- Reliable (intra and inter-rater)

Cons
- Questionable validity, dependent on consistent tension

Document
- Time of day
- Anatomical landmarks used

Method
- Use flexible tape measure
- Do not indent skin with tape measure
- Compare to contralateral

Range of Motion (ROM)

Goniometer – most common method of measurement; measures motion in one plane.

If measuring:
- One joint: place adjacent joints in relaxed position
- Muscle/tendon length: place all joints such that soft tissues are at full length

MCID: measurement changes should exceed 5 degrees per joint with same examiner

ASHT and AMA recommendations for ROM:
- “0” is neutral
- “+” is hyperextension
- “−” is an extension deficit
- Measurements should be written as extension/flexion (e.g. -10/85)
- “A volar/dorsal placement is generally preferred over lateral placement for finger or wrist E/F; although deformities, swelling, or other factors..... Suggest lateral placement could be used.
ROM

Accessory measurements of ROM

- Linear Measurements in cm:
 - Distance to distal palmar crease (recorded as 4/3/3/2)
 - Digital abduction from midline
 - Webspace (e.g. thumb IPJ to index PJ)

• Kapandji Scale – opposition

• Paper tracing

• Tongue depressor “yardstick” to gauge progress

• Active and Passive
 - Active = muscle generates the ROM
 - Passive – external force generates the ROM
 - Document which is being measured
 - Requires consistency in tool, positioning, and landmark orientation

- Total active motion (TAM) – combined active motion of ≥ 2 joints
- Total passive motion (TPM)

AMA Guide to Evaluation of Permanent Impairment, severity scale for ROM Deficits

<table>
<thead>
<tr>
<th>Grade Modifier</th>
<th>Severity</th>
<th>Range of Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
<td>10% to full</td>
</tr>
<tr>
<td>1</td>
<td>Mild</td>
<td>60-90%</td>
</tr>
<tr>
<td>2</td>
<td>Moderate</td>
<td>30-60%</td>
</tr>
<tr>
<td>3</td>
<td>Severe</td>
<td><30%</td>
</tr>
<tr>
<td>4</td>
<td>Very Severe</td>
<td>Joint ankylosis</td>
</tr>
</tbody>
</table>

TAM example:

Add flexion of all joints measured; subtract extension deficits

Example:

MP 0/90
PIP -10/85
DIP -5/55

TAM = (90 + 85 + 55) – (10 + 5) = 215

Total passive motion (TPM) – same formula
Some factors affecting limited A/PROM

- Pain
- Capsular or ligament tightness
- Passive insufficiency (muscle/tendon shortness)
- Bony blocks
- Weakness
- Loss of tendon integrity
- Scar adhesions

If PROM > AROM then the joint is being limited by adhesions, weaknesses or tendon integrity. Document AROM and PROM.

ROM

Intrinsic Tightness Test

- Hold MP in ext and passively flex PIP. Measure PIP flexion.
- Hold MP in flexion and passively flex PIP. Compare PIP flexion to first measure.
- Test is positive if PIP flexion is greater with MPJ in flexion than extension.

Extrinsic Tightness Test for Extensors

- Hold MPJ in extension and passively flex IPJs. Measure IPJ flexion.
- Hold MPJ in flexion and passively flex IPJs. Measure and compare IPJ flexion to first measure.
- Test is positive if greater IPJ flexion with MPJ in extension than flexion.

Oblique Retinacular Ligament Tightness Test

- Hold PIP in extension and passively flex DIP. Measure DIP flexion.
- Hold PIP in flexion and passively flex DIP. Measure DIP flexion.
- Test is positive if DIP has greater flexion with PIP in flexion than extension.

Extrinsic Flexor Tightness Test

- Place wrist in neutral and passively extend the digits; then slowly increase wrist extension (elbow extended and forearm supinated).
- Positive test if patient is unable to passively maintain IPJs in extension as the wrist extension is increased.
- Rule out PIP or DIP joint tightness by evaluating the individual joint status with wrist in neutral or slight flexion.

What does it mean if IPJ flexion is the same regardless of MPJ position?
Sensibility

3 Nerves supply motor and sensory function to hand: median, ulnar, radial

Sensibility evaluation involves only sensory function, not motor

Sensibility evaluation should include examination of the skin for sudomotor function.

Sensibility

Hierarchical classification of sensory modality tests

<table>
<thead>
<tr>
<th>Sensibility Modality</th>
<th>Tests/Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Touch threshold</td>
<td>Monofilaments, vibrometers</td>
</tr>
<tr>
<td>Light to deep pressure,</td>
<td></td>
</tr>
<tr>
<td>static and moving</td>
<td></td>
</tr>
<tr>
<td>2. Spatial discrimination</td>
<td>Spatial threshold tests:</td>
</tr>
<tr>
<td>Localizing and determining</td>
<td>2 PD, GOT, Touch Localization</td>
</tr>
<tr>
<td>spatial resolution</td>
<td></td>
</tr>
<tr>
<td>3. Identification</td>
<td>Moberg pick-up test, Modified Moberg, STI</td>
</tr>
<tr>
<td>Shape, texture, and object ID</td>
<td></td>
</tr>
</tbody>
</table>

Sensibility

Sudomotor function - Assessed through observation and palpation

• Sudomotor: sweating
• Vasomotor: skin color and temp.
• Pilomotor: gooseflesh response
• Trophic: skin texture, soft tissue atrophy (‘penciling’ of finger tips), nail changes, hair growth, rate of healing

Semmes-Weinstein

Test Administration

• position patient, seated, hand supinated, resting on towel or putty
• vision occluded, quiet atmosphere
• clearly explain the test to the patient
• show them the monofilaments on your own hand - "thinnest is like a hair" and "thickest is like a toothpick"
• “some are easy to feel and some are hard to feel”
• “I will move around and touch different fingers, let me know when you feel a touch”

Semmes-Weinstein

Test Administration

• monofilament applied to skin per protocol
• apply perpendicular to skin for 1.5 seconds, to bending, lift for 1.5 seconds
• repeat x3 for filaments 1.65 - 4.08
• 1x only for filaments 4.17 - 6.65
Semmes-Weinstein Test Administration

- Volar surface first
- Follow digital nerve innervation
- Progress testing distal to proximal
- Progress to filaments of increasing pressure
- Randomize sequencing and timing to minimize anticipation of responses

Semmes-Weinstein Scoring/Norms

- Normal: 1.65 - 2.83
- Diminished light touch: 3.22 - 3.61
- Dim. protective sensation: 3.84 - 4.31
- Loss of protective sens: 4.56 - 6.65
- Untestable: greater than 6.65

Sensibility: Touch Threshold Tests

Vibration Threshold – measures pallaesthesia (Gr. “vibratory sense”)

- Originally used to test fast-adapting mechanoreceptors (Meissner and Pacinian)
- Measures change after nerve repair/reinnervation
- Weak to moderate correlation to functional sensibility tests.
- Results not quantifiable
- No longer considered necessary as SWM measure all mechanoreceptors

Sensibility: Spatial Discrimination Tests

2 Point Discrimination – Test of spatial threshold; dependent on receptor density

- Measures smallest distance at which 2 points are perceived as 2
- Important in tactile gnosis e.g. grasp, manipulating objects, and identifying shape, form, texture without vision
- Population – nerve repairs, Hansen’s Dz, diabetic neuropathy, nerve compression

Sensibility

2PD - Method

- Hand supinated and supported, vision occluded
- Points are applied to digital pulps in longitudinal orientation
- Median nerve: Thumb and index
- Ulnar nerve: small finger
- Start with wide space (e.g. 12 mm); apply randomly in decreasing order until patient begins to give incorrect answers

Sensibility

- Apply enough pressure to detect pressure; blanching not a good indicator
- Must have 7 correct to progress to next lower width
- Some authors suggest 2 out of 3; or 4 of 7...
- Compare with contralateral hand

ASBH Interpretation of results

- <6 mm normal
- 6-10 mm = fair
- 11-15 mm = poor

- Sensitivity 32%, Specificity 81%
Sensibility: Spatial discrimination tests

Localization – locognosia. Also dependent on receptor density (like 2PD).

• Patient points to hand chart to signify where his hand is being touched.
• Compare to contralateral

Sensibility: Identification Tests

Assess usefulness of sensibility

Moberg Pick-up Test (also Modified Moberg)
**Both versions include test of motor and sensory

• Moberg: Tests ability to grasp and place small objects using thumb, index and long fingers
• Modified: Tests ability to ID objects without vision
• Not standardized; norms not available
• Required: 10-12 small metal objects, stopwatch, blindfold

Shape-Texture Identification (STI) Test – Patient identifies 3 shapes of decreasing size (cube, hexagon, cylinder) and 3 discs with raised dots of decreasing size.

ASHT/CAR recommendations:

• Evaluation of touch threshold in patients with nerve compression should be a core assessment
• Evaluation of touch threshold combined with an identification test should be performed on all patients with nerve repair
• Therapists should be aware that there is a basic lack of standardization on many sensory tests.
• Minimizing distractions, using standardized techniques when available, and using calibrated tools enhances validity of measurements.

Strength

• Dynamometer
• Pinch Meter
 Lateral
 Tripod
 Tip
Strength

Grip - method
- 2nd rung (note if using any other)
- Examiner supports base of dynamometer
- Pt seated, arm adducted, elbow 90, forearm neutral
- Avg of 3 trials (unless painful)
- Hold grip ≥3 seconds; 15 second rest between

Grip Strength

- no good norms, compare to contralateral hand
- Average Grip Range
 - Male: 80-140 lb.
 - Female: 40-80 lb.
- 10% rule: "normal" difference between dominant and non-dominant hands
 - tends to be less than 10% in left handed people (often right hand is stronger)
 - may be more than 20% in people who extensively use one-handed tools requiring tight grip (e.g. wrench, pliers)

Strength

Pinch – tripod, tip and lateral
Method-
- Sitting, shoulder Ad, elbow 90/neutral, or pronation for tip and tripod pinch
- Examiner supports pinch gauge
- Tripod: gauge on side and held between pulps of thumb and index/long. I/LF on dial side
- Tip pinch: held between tips of thumb and index
- Lateral: dial faces up. Thumb pulp on dial side, radial P2 of index on bottom.
- “Pinch as hard as you can.” x 3; average

Strength

Tripod
- (3 Jaw Chuck)
 - Thumb against IF and MF.
 - Median n. injuries

Lateral
- (key)
 - Thumb against radial side of IF
 - Ulnar N. (AdPol, 1st DI)

Tip
- to tip
 - Thumb against IF
 - AI N

Functional Strength

- BTE
- Cybex
- Performance of activities

Functional Tests

- Self reports
- DASH
- Quick DASH
- Patient-Rated Wrist Evaluation (PRWE)
- Performance tests - e.g. Sollerman, Jebsen-Taylor
- Functional Capacity tests
Patient Rating Scales: symptom or satisfaction ratings.

- **DASH:** Disabilities of the Arm, Shoulder and Hand
 - 30 items
 - *Quick DASH* has 11 items covering ADL performance and symptoms
 - NOT specific to injured extremity
 - Established reliability and validity of both
 - www.dash.iwh.on.ca/

Patient Rating Scales

- Patient rated wrist/hand evaluation (PRWHE):
 - High test-retest reliability
 - Specific to injured extremity
 - 5 items covering pain
 - 10 items on function
 - 2 optional items on appearance
 - Poor-moderate correlation to impairment ratings (MacDermid et al 2002)
 - MCID – 12/24 points (Schmitt and Di Fabio 2004)
 - Established reliability and validity

Evaluation

- Summarize data to get full picture
- Documentation is important
- Set goals for components to achieve long term functional goals
- Re-examine at intervals to determine progress and outcome from treatment

Bibliography