General Shoulder Evaluation²³

- History
- Chief complaint
- Pain: aggravating factors
- Functional deficits
- Mechanism of injury (if applicable)
- Special tests

The Simple Shoulder Test (SST)

- High test-retest reliability
- Quick to complete
- Easy to score
- Sensitive to variety of disorders
- Sensitive to change in function

Palpation of Bursa and Rotator Cuff

*Be structure specific

Source of Pain

- Forward head/rounded shoulder posture
- Brings scapula into protraction and anterior tilt; humerus into IR
- Narrows subacromial space and can be a predisposing factor to impingement
- ANT Pelvic tilt
Typical Position of Poor Posture

Muscles generally weak
- Levator scapulae
- Rhomboids
- Lower trapezius
- Serratus anterior

Muscles often tight
- Deltoid minor
- Latissimus dorsi posterior major

Observation of Scapula Position

• Compare position bilaterally: superior-inferior, abduction-adduction, rotation

Observation of Scapula Position

• "Winging"
 - Vertebral border is pulled away from chest wall
 - Clinical pearl: Typically present with weak SA

Observation of Scapula Position

• Inferior angle is pulled away from chest wall: mistaken for winging
 - Clinical pearl: these presentations are typically present with tight pec minor and elongated MT and LT

Range of Motion

• AROM
 - Observe quality of movement
 - Scapulo-humeral rhythm
 - Note excessive movement at one joint if restriction at another — may give the appearance of "normal" motion
 - Note if painful arc of motion is present

Range of Motion

• PROM
 - Note irritability and end feel
 - Pay attention to substitution at surrounding joints
 - Specific patterns of restriction
 - Adhesive capsulitis: ER>ABD>IR
 - Tight posterior capsule: limited IR and CBA
 - Tight subscapularis: ER limited more at 0° vs. 45°-90°
 - Tight MGHL and IGHL: ER limited more at 45°-90° vs. 0°
 - Tight inferiorly: decreases elevation
MMT/Resisted Testing

- MMT positions are often painful or difficult for patient to achieve
- Assessment of pain and strength to detect lesion
- Isometric test at safe position
- Abduction, adduction, flexion, extension, ER, IR, elbow flexion and extension
- Test at 0°, 45°, 90° as able

Grading/Interpretation Of Resisted Tests

- Strong/painless:
 - normal
- Strong/painful:
 - Lesion within muscle or tendon
 - Can range from tendonitis to partial or small full thickness tear
- Weak/painful:
 - Significant injury to muscle or tendon
 - Large RTC tear would present with weak/painful shoulder abd and ER
- Weak/painless:
 - muscle or tendon rupture

Special Tests

- Hawkins-Kennedy Impingement Test
- Neer Impingement Test
- Yokum Test: impingement
- Patte Test: loss of Teres Minor
- Painful Arc Test: impingement
- Cross-Over Impingement Test
- Lock Test: Impingement Supraspinatus
- Drop Arm Test: Full thickness RC tear
- Clunk Test: Labral Tear

- Crank Test: Labral Tear
- Speeds Test: Labral Tear/Bicipital Tendonitis
- Yergason’s Test: Bicipital Tendon Disorders
- O’Brien’s Test: Labral Abnormality
- Anterior Slide Test: Superior Labral Tears
- Sulcus Sign: Inferior Instability
- Apprehension Test: Instability
- Rockwood Test: Ant Instability

Impingement

- Pressure of the supraspinatus and/or long head of the biceps tendon in the subacromial space with elevation of the arm
 - Subdeltoid bursa
 - Supraspinatus/Infraspinatus insertion
 - Head of biceps

Extrinsic Factors of Impingement

- Glenohumeral muscle imbalance
 - Weak, fatigued or injured rotator cuff muscles are unable to oppose deltoid (failure of glenohumeral force couple)
 - Causes superior migration of humeral head
- Periscapular muscle imbalance
 - Failure btw muscles that rotate and protract the scapula during elevation

Common Shoulder Pathology

- Pressure of the supraspinatus and/or long head of the biceps tendon in the subacromial space with elevation of the arm
Intrinsic factors of Impingement

- Anatomic variations of the acromion
 - Type I (flat), type II (curved), type III (hooked) acromion.
 - Many rotator cuff tears are associated with type II or III

Stage 1

- Clinical presentation
 - Pain at anterior lateral shoulder
 - Painful arc of motion (60-120) with elevation
 - Positive impingement sign: Neers, Hawkins-Kennedy
 - Strong but painful resisted testing of RTC
 - Tenderness with palpation of subacromial space
 - Muscle spasm of upper traps, levator scapulae and subscapularis

Treatment

- Reduce and eliminate inflammation: ice, modalities
- Patient education: rest, functional activity below shoulder level
 - Sleep and work positioning
 - Improve periscapular muscle control
 - Dynamic strengthening of force couples once painful arc is eliminated

Stage II Impingement

- Fibrosis of glenohumeral capsule and subacromial bursa and tendonitis
- Typically 20-40 years old
- Clinical presentation same as stage I but also with loss of ROM typically of capsular pattern:
 \[\text{ER} > \text{abduction} > \text{IR} \]

Treatment

- Stage I treatment, plus
- Restore full A/PROM: stretching and manual techniques

Stage 1 Impingement

- Edema and inflammation of the rotator cuff and subacromial tissue
- Typically less than 25 years old

Stage II Impingement

- Fibrosis of glenohumeral capsule and subacromial bursa and tendonitis
- Typically 20-40 years old
- Clinical presentation same as stage I but also with loss of ROM typically of capsular pattern:
 \[\text{ER} > \text{abduction} > \text{IR} \]

Treatment

- Stage I treatment, plus
- Restore full A/PROM: stretching and manual techniques
Stage III Impingement

- Disruption of rotator cuff tendons
- Bone spurs are typically present
- Clinical presentation as stage II plus weak/painful resisted tests
- Treat as stage II impingement
- If not responsive to conservative treatment, surgical consideration

Surgical treatment of Impingement

- Acromioplasty: decompression of anterior acromion to provide additional space
- Rotator cuff debridement or repair may also be done depending on the condition

Rotator Cuff Tear and Repair

Classification

- **Thickness**
 - Full thickness—torn compromises the entire muscle from bursal to articular surface
 - Partial thickness—can occur on bursal or articular side

- **Size**
 - Small < 1 cm.
 - Medium = 1-3 cm.
 - Large = 3-5 cm.
 - Massive = > 5 cm.

Mechanism of failure

- **Chronic**—degenerative, occurs insidiously
 - See causes of impingement
- **Acute**—traumatic incident
 - Fall on an outstretched hand, traction injury, tensile overload or forceful overhead activity

Rotator Cuff Tear and Repair

Better outcomes

- <55 y/o
- Sudden traumatic onset
- Smaller tears / repairs
- No history of injections
- Good overall health

Poorer outcomes

- >65 y/o
- Insidious atraumatic onset
- Pain / weakness > 6 months
- Multiple injections
- Large tears

Classification of RTC Tears

MRI – CUFF TEARS
Clinical Presentation of RTC Tears

- Pain
- Abnormal posture and scapula position
- May have pain with palpation of subacromial space
- May have limited A/PROM
 - Full thickness tears will most likely have limited active with not as much pain
 - Partial thickness may present similar to impingement
 - Observe scapular motion with movement—usually irregular

Clinical Presentation of RTC Tears

- Manual Muscle Testing/Resisted testing
 - Full thickness may be weak and painless
 - Partial thickness may be weak and painful
- Special tests
 - Empty can—supraspinatus
 - Lift off—subscapularis
 - Drop Arm—supraspinatus
 - External Rotator Lag Test—infraspinatus/teres minor

Conservative Treatment of RTC Tears

- Reduction of pain and inflammation
- Restore full PROM
- Restore mm strength and balance
 - Pain will guide progression

Unrepaired RTC Tears

- Can progress and become irreparable
 - Tear grows larger
 - Tear tissue degenerates
 - Muscle belly of the tendon shortens and loses elasticity and eventually has atrophy and fatty infiltration of the muscle
 - The shortened tendon becomes scarred down in contracted position
 - Torn edges of tendon have collagen degradation and cannot hold suture to repair

Surgical Treatment of RTC Tear

- Open repair—indicated with muscle retraction, poor tissue quality and/or weak bones
 - 2 or 3 inch incision
 - Deltoid is reflected from acromion
 - RTC repaired
 - Acromioplasty is usually performed
 - Deltoid is re-attached
 - Therapy is usually slower and pain levels are usually higher
Surgical Treatment of RTC Tear

- Mini-open
 - Shoulder is assessed arthroscopically and acromioplasty is usually performed; edges of RTC are shaved
 - ¾ to 1 inch incision is made and deltoid is split longitudinally
 - RTC repaired
 - Tends to be more stiffness but less pain than open repair
 - Rehab progresses faster because deltoid is split rather than detached.

Surgical treatment of RTC Tear

- Arthroscopic
 - Acromioplasty and RTC repair done arthroscopically
 - Least painful
 - Requires highly skilled surgeon
 - Rate of re-tear with large to massive tears tend to be higher

ARTHROSCOPIC Repair

- Better visualization—other pathology seen
- Avoids deltoid injury
- Cosmesis better and less scar tenderness
- Improved pain control
- Improved rehab
- Principals Remain the SAME
- More Difficult

CUFF REPAIR

Cuff Repair
Rehabilitation after RTC Repair Protocols

• General principles
 • Shoulder is rested in sling or abduction pillow for 4 weeks to allow for tendon to heal
 • ROM
 • Minor tears (<3cm): PROM first 4 weeks p/o, AAROM 4-6 weeks p/o, AROM 8 weeks p/o
 • 3cm to <5cm: PROM first 8 weeks p/o, AAROM 8-10 weeks p/o, AROM 12 weeks p/o
 • Massive tears (>5cm): PROM first 12 weeks, AAROM 12-14 weeks p/o, AROM 14-16 weeks p/o.

Rehabilitation after RTC Repair

Phase I: 0-6(8) or 0-12 weeks
• Sling or abduction pillow
• Pendulum / Codman’s
• Scapular squeezes
• PROM ER limited to 30-45, full elevation
• Advance to gentle submax isometrics

Phase II: 6(8)-12(16) weeks
• AA/Active motion initiated – pain free
• Promote normal scapular motion
• Avoid improper movement patterns (shrugging)
• Advance to isotonic strengthening and PNF
Phase III: 12(16+)+ weeks
• Maximize strength including sports specific or work specific strengthening

Adhesive Capsulitis

• Definition: thickening and contracture of the glenohumeral joint capsule causing loss of the axillary fold of the capsule and adhesion of the associated ligaments
• Capsular pattern: PROM limited in ER>abds>IR

Loose Packed Position

• Minimal Joint Surface Congruity
• Minimal Joint Surface Contact
• Maximal Joint Volume
• Minimal Stability of the Joint
• Stiffening of the Major Ligaments of the Joint

Close-Packed Position

• Maximal Joint Congruity
• Maximal Tautness of Major Ligaments
• Minimal Joint Volume
• Minimal Stability of the Joint

Adhesive Capsulitis: 3 Stages

• Painful or freezing (10-36 weeks)
 • Spontaneous onset of severe pain
 • Disrupts sleep
 • Tendency is to rest arm which contributes to stiffness
• Stiffening or frozen (4-12 months): restricted ROM in capsular pattern
• Thawing (5-26 months)
 • Gradual recovery of ROM
 • Time in this phase is directly related to time in painful stage
 • May not achieve full ROM
Adhesive Capsulitis
Non-Operative Treatment

• Therapy
 • Modalities to decrease pain
 • A/AA/PROM exercise to include scapula/trunk
 • Low load, prolonged stretch yields the greatest results
 • Restoration of scapulo-humeral rhythm; strengthening of scapular stabilizers. Need significant neuro-re-education of scapular motion.
 • Joint mobilization
 • Grade 1-2 oscillation in early stages to decrease pain
 • Progress to grade 3-4 for capsular stretch, increase ROM
 • Soft tissue mobilization: Upper trap, levator scapulae, peri-scapular musculature
 • Progress to progressive resistive exercise once motion is restored

Adhesive Capsulitis
Operative Treatment

• Manipulation under anesthesia (MUA)
• Arthroscopic release
 • Removal of scar tissue from the anterior capsule
 • Often combined with gentle MUA

Shoulder Instability
Clinical Presentation

• Definition: Inability to maintain the humeral head centered in the glenoid cavity
• A component of the stabilizing matrix has become dysfunctional (usually labrum)
• Direction of Instability
 • Anterior
 • Posterior
 • Inferior
 • Multidirectional
 • Anterior-inferior is most common (Bankart)

Shoulder Instability
Clinical Presentation

History
• TUBS: traumatic, unilateral, bankart, surgery
 • Specific traumatic event causing dislocation
 • Usually labroligamentous complex lesion (Bankart)
 • Require surgery: only 14% rehab successfully
 • Bankart repair

History
• AMBRI: atraumatic, multidirectional, bilateral, rehabilitation, inferior shift
 • No clear cut history of dislocation
 • Multiple planes of instability in both shoulders
 • Rehab: 85% successful
 • If rehab is not successful require inferior capsular shift (tightening of the inferior capsule)
 • Can typically dislocate voluntarily

• Special tests
 • Apprehension test (AB with ER)—anterior instability
 • Jobe relocation test (posterior glide before pushing into ER — symptom relief)—anterior instability
 • Load and shift test (stabilize scap – push forward / pull back)—anterior and posterior instability
 • Sulcus test — (pull downward) — inferior instability
Shoulder Instability - Non-operative

- Decrease pain and inflammation
- Restore normal ROM while avoiding excessive ER/ABD
 - Pay special attention to the posterior capsule especially in the patient with a long-standing history of instability
- Establish normal scapulo-humeral rhythm by re-establishing scapular mm control
- Increase strength of RTC, deltoid and scapular mm
 - Start in non-provocative positions and slowly progress to overhead positions
 - Slowly progress to RTC and scapular mm control at ER/ABD

Shoulder Instability Operative Treatment

- Bankart
 - Bankart Lesion: Tear of the labrum and the capsule at the anterior, inferior glenohumeral joint
 - Surgery requires repair of the defect

Shoulder Instability: Bankart Repair

- May be open or arthroscopic
- Capsule is revealed through the Subscapularis
 - Split longitudinally (usually arthroscopic)
 - Tenotomy (open)
 - Capsule is split to expose labral lesion
 - Lesion is repairable with anchors
 - Capsule is repaired
Bony Bankart

- Bony Bankart = fracture of the anteroinferior glenoid
- If >25% of the glenoid is involved in a bony-Bankart lesion the joint will be unstable without ORIF of the bony lesion, or bone grafting the defect.

Bankart Rehabilitation

Multiple protocols exist—check with physician

- General guidelines
 - Immobilization in sling 3-4 weeks for open repairs and 1-2 weeks for arthroscopic repairs to allow for healing of repaired structures
 - ROM
 - Avoid abduction/extension at 90/90 for 4-6 weeks; do not want to overstress repaired structures
 - Respect anterior structures
 - Typically this is not the patient population that lacks motion
 - Strengthening: initiated at 6-8 weeks
 - Neuromuscular control of the scapular stabilizers is very important with this population

Hills Sachs

SLAP Lesions

Superior labrum anterior TO posterior

- Tear at the superior labrum
- Involves anchor of the biceps tendon to the labrum

SLAP Lesions

- 4 types
 - Type I: degenerative fraying of the superior labrum with the edge firmly attached to the glenoid rim
 - Type II: detachment of the superior labrum and biceps tendon from the glenoid with destabilization of the biceps anchor—most common: 55% of labral tears
 - Type III: bucket-handle tear of the superior labrum
 - Type IV: bucket-handle tear of the superior labrum with extension into the biceps tendon
SLAP Lesions

Clinical presentation

• **History**
 - Traumatic event
 - Compressive force applied to shoulder, e.g., fall on an outstretched arm that is abducted and slightly flexed (most common)
 - Traction injuries
 - May also occur in the presence of shoulder instability; very common with overhead athletes especially throwing athletes
 - Subjectively c/o deep pain, popping, and clicking

• **Special tests**
 - O'Brien's test
 - Load and Shift test
 - Kibbler test
 - Pain at biceps groove

• **Treatment**
 - Conservative
 - Rest, physical therapy, NSAIDs
 - No data is available regarding efficacy of conservative management
 - Most are treated surgically

SLAP Lesions

Surgical Treatment

• **Type I and III:** arthroscopic debridement of the frayed portion
• **Type II:** frayed tissue is debrided and detached biceps-labral complex is reattached to the superior glenoid with suture anchors or biodegradable tacks
• **Type IV:** depends on the extent of biceps involvement whether the frayed portion is debrided or repaired. Detached portion is reattached with suture anchors or biodegradable tacks.

SLAP Rehabilitation

Type II- most common

• Usually immobilized for 3-4 weeks to allow healing of repaired structures
• Initiate A/AA/PROM; 90/90 position is contraindicated for 8 weeks
• Strengthening initiated at 6-8 weeks; respect the biceps tendon

Fractures of the Humerus

• **Lesser tuberosity**
 - Rare; often seen with posterior dislocation
 - Closed reduction

• **Greater tuberosity**
 - Usually the result of a fall on the shoulder
 - Common in elderly individuals
 - Non-displaced: begin active exercise ASAP to avoid stiffness
 - Displaced and/or avulsed: usually requires surgical fixation with post-op immobilization 2-3 weeks
Fractures of the Humerus

- **Neck of the humerus**
 - Fall on outstretched arm or elbow (elderly, osteoporotic women)
 - 3 categories: unimpacted, angulated impacted and comminuted
 - Hemiarthroplasty often need for older individuals with angulation greater than 45
 - May require ORIF

- **Shaft of the humerus**
 - Direct blow or twisting force causing spiral fracture in the middle one-third
 - Early motion is desirable
 - Again, immobilization varies depending on stability
 - May require surgical fixation; watch for radial nerve palsies

Fractures of the Humerus Rehabilitation

- Early mobilization is essential once safe to avoid stiffness:
 - A/AAROM
 - PROM if fracture is stable (pain dictates)
 - Immobilization in a sling lends itself to capsular pattern
 - Grade I and II oscillatory mobilizations for pain and relaxation
 - Grade III and IV for ROM once pain levels are low
 - Initiate strengthening once fracture is stable, pain is low and patient has 50% of ROM

Glenohumeral Arthritis

- **Causes**
 - OA
 - Avascular necrosis
 - Dislocation arthropathy
 - RA
 - Post-traumatic arthritis
 - Septic arthritis
 - Cuff tear arthropathy
 - Malunion or nonunion of proximal humerus fracture

- **Symptoms**
 - Progressive stiffness and loss of motion
 - Complain more of limited function and difficulties with ADL’s
 - Generally have restricted PROM with normal strength
 - May have night pain generally positional
Glenohumeral Arthritis

- Operative Management
- Debridement
- Capsular Release
- Resurfacing
- Hemiarthroplasty w/wo interpositional arthroplasty or stemmed hemiarthroplasty
- Total Shoulder Arthroplasty
- Reverse Total Shoulder Arthroplasty

Hemi- Arthroplasty

- Resurfacing hemiarthroplasty may be an option for you if:
 - The glenoid still has an intact cartilage surface
 - There has been no fresh fracture of the humeral neck or head
 - There is a desire to preserve humeral bone

Hemi-arthroplasty: Preparation of Head

Surface Reamer

Impact Prosthetic Head

Advantages of Surface Replacement

- Relatively simple technique
- Maintain normal anatomy
- No changes in:
 - Inclination
 - Version
 - Offset
- Avoid humeral osteotomy with potential errors in head height, version, inclination
- Post-op treatment similar to TSA
44 yo with AVN, inflam. bowel disease

Total Shoulder Arthroplasty

- Indications: osteoarthritis, rheumatoid arthritis, avascular necrosis, cuff tear arthropathy, acute fractures, posttraumatic arthritis
- May be done with a rotator cuff repair depending on soft tissue quality

Total Shoulder Arthroplasty Rehabilitation

- Normal goals
 - Good pre-op PROM
 - Good rotator cuff tissue
- Limited goals (physician will assign this category)
 - Poor cuff tissue
 - Poor pre-op PROM
 - Check with referring physician per protocol

Total Shoulder Arthroplasty Rehabilitation

- ROM
 - AA/PROM initiated post-op day 1
 - Do not exceed ER achieved in OR for first 6 weeks
 - If don’t know, do not exceed 30°

- Strengthening
 - Scapula exercise at 2-3 weeks
 - Progressive RTC strengthening at 6-8 weeks
 - Time guidelines delayed if RTC repair or limited goals

- Time guidelines will be delayed if RTC repair was performed and for the patient with limited goals
- Outcomes regarding pain relief are good
- Outcomes regarding function are based on quality of soft tissues as determined by physician
- Poor soft tissue quality: “eyes to thighs” function
Humeral Arthritis with Rotator Cuff Arthropathy

- Rotator cuff insufficiency
- Joint space narrowing
- Osteophytes
- Proximal Migration Humeral Head
- Acetabularization of Acromion
- Superior Glenoid Wear

Significant finding is lack of or limited elevation of shoulder.

Reverse Total Shoulder Arthroplasty

- Socket and metal ball are switched
- Ideal for patients with RC arthropathy because it relies on deltoid to position arm

TABLE 16-17

<table>
<thead>
<tr>
<th>Activity</th>
<th>Starting Range of Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eating</td>
<td>70°–100° horizontal abduction, 45°–60° abduction</td>
</tr>
<tr>
<td>Comb your hair</td>
<td>30°–70° horizontal abduction, 110°–130° abduction, 90° axial rotation</td>
</tr>
<tr>
<td>Reach between</td>
<td>75°–90° horizontal abduction, 90° or greater internal rotation</td>
</tr>
<tr>
<td>Tuck in shirt</td>
<td>30°–60° horizontal abduction, 55°–65° abduction, 90° internal rotation</td>
</tr>
<tr>
<td>Position hand behind head</td>
<td>10°–15° horizontal abduction, 110°–125° forward flexion, 90° axial rotation</td>
</tr>
<tr>
<td>Put an item on a shelf</td>
<td>70°–90° horizontal abduction, 90°–95° forward flexion, 45° external rotation</td>
</tr>
<tr>
<td>Wash opposite shoulder</td>
<td>60°–80° forward flexion, 60°–120° horizontal abduction</td>
</tr>
</tbody>
</table>

References and Suggested Readings

